On Finding Integer Solutions To Non-homogeneous Ternary Cubic Equation

$$
x^{2}+b y^{2}=\left(m^{2}+b n^{2}\right) z^{3}
$$

S.Vidhyalakshmi ${ }^{1}$, M.A.Gopalan ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.
${ }^{2}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.

Abstract

: The purpose of this paper is to obtain different sets of non-zero distinct integral solutions of ternary non-homogeneous cubic Diophantine equation $x^{2}+b y^{2}=\left(m^{2}+b n^{2}\right) z^{3}$. A few properties of interest are presented.

Key words: Cubic with three unknowns, Non-homogeneous cubic ,Integer solutions
Notations:
T_{n}-Triangular number of rank n
HP_{n}-Heptagonal number of rank n
O_{n}-Octagonal number of rank n
D_{n}-Decagonal number of rank n
DD_{n}-Dodecagonal number of rank n
Th_{n}-Tetrahedral number of rank n
PP_{n}-Pentagonal Pyramidal number of rank n

Introduction:

The theory of Diophantine equations offers a rich variety of fascinating problems. In particular, cubic diophantine equations, homogeneous and non-homogeneous have aroused the interest of numerous mathematicians since antiquity [1-4]. In this context, one may refer [5-25] for various problems on the cubic diophantine equations with three variables, where, in each of the problems, different sets of non-zero integer solutions are obtained. However, often we come across homogeneous and non-homogeneous cubic equations and as such one may require its integral solution in its most general form. It is towards this end, this paper concerns with the
problem of determining a general form of non-trivial integral solutions of the non-homogeneous cubic equation with three unknowns given by $x^{2}+b y^{2}=\left(m^{2}+b n^{2}\right) z^{3}$.

Method of Analysis :
The non-homogeneous ternary cubic diophantine equation
under consideration is

$$
\begin{equation*}
x^{2}+b y^{2}=\left(m^{2}+b n^{2}\right) z^{3} \tag{1}
\end{equation*}
$$

where $b \neq 0$ and m, n are arbitrary integers not equal to zero simultaneously.
Taking

$$
\begin{equation*}
\mathrm{z}=\mathrm{p}^{2}+\mathrm{bq} \mathrm{q}^{2}, \mathrm{p}, \mathrm{q} \neq 0 \tag{2}
\end{equation*}
$$

in (1), it is written as

$$
\begin{equation*}
(x+i \sqrt{b} y)(x-i \sqrt{b} y)=(m+i \sqrt{b} n)(m-i \sqrt{b} n)(p+i q \sqrt{b})^{3}(p-i q \sqrt{b})^{3} \tag{3}
\end{equation*}
$$

Assume

$$
\begin{equation*}
x+i \sqrt{b} y=(m+i \sqrt{b} n)(p+i \sqrt{b} q)^{3} \tag{4}
\end{equation*}
$$

Since complex conjugates occur in pairs, we have

$$
\begin{equation*}
x-i \sqrt{b} y=(m-i \sqrt{b} n)(p-i \sqrt{b} q)^{3} \tag{5}
\end{equation*}
$$

From (4) and (5), the values of x and y are obtained as

$$
\begin{align*}
& x=m\left(p^{3}-3 b p q^{2}\right)-b n\left(3 p^{2} q-b q^{3}\right) \tag{6}\\
& y=m\left(3 p^{2} q-b q^{3}\right)+n\left(p^{3}-3 b p q^{2}\right) \tag{7}
\end{align*}
$$

Thus, equations (2), (6) and (7) represent the integral solutions of (1).
To obtain various characterizations of solutions of (1), we have to consider it when the parameters m, n and b take particular values.

For illustration, the choice

$$
\begin{equation*}
m=1, \quad n=0, \quad b=-1 \tag{8}
\end{equation*}
$$

in (1) leads to the diophantine equation

$$
\begin{equation*}
x^{2}-y^{2}=z^{3} \tag{9}
\end{equation*}
$$

We present various patterns of solutions of (9) below:

Pattern I

Substituting (8) in (2), (6) and (7), the values of x, y and z satisfying (9) are obtained as

$$
\begin{aligned}
& \mathrm{x}=\mathrm{p}\left(\mathrm{p}^{2}+3 \mathrm{q}^{2}\right) \\
& \mathrm{y}=\mathrm{q}\left(3 \mathrm{p}^{2}+\mathrm{q}^{2}\right) \\
& \mathrm{z}=\mathrm{p}^{2}-\mathrm{q}^{2}
\end{aligned}
$$

A few interesting properties observed from the above solutions are given below:

1) Each of the expressions $x \pm y, 4(x-a z)(y+b z), 4(x+3 a z)(y-3 b z)$ is a Cubical integer.
2) If the parameters (p, q) are taken as the squares of legs of a Pythagorean triangle the sum $x+y$ is a sextic integer.
3) Taking the parameter p to represent square of the hypotenuse and q to denote the square of a leg of a Pythagorean triangle, the difference $x-y$ is a sextic integer.
4) The triplet ($4 p q z, 8 p^{2} q^{2}, q x+p y$) forms a Pythagorean triplet
5) $p y-q x=2 p q z$
6) Introducing the notations $x(p, q), y(p, q)$ and $z(p, q)$ for the solutions x, y and z respectively, the following relations are noticed.
a) $3[x(1,1+2 q)-2 x(1,1+q)+4 x(1, q)]$ is a Nasty number.
b) $x(1, q)+3 z(1, q)=4$
c) $2 z(p+2 q, q)-4 z(p+q, q)+2 z(p, q)=x(1, q)-z(1, q)$
d) $z(p+2 q, q)-2 z(p+q, q)+z(p, q)=x(1, q)+z(1, q)-2$
e) $z(p, q) z(p+q, p-q)=2(2 p q) z(p, q)=2(p y(p, q)-q x(p, q))$
f) $64 x^{2}(p, 1)=[y(p, 1)+z(p, 1)][y(p, 1)+z(p, 1)+12]^{2}$
g) $z(p+q, q)-z(p-q, q)=4 p q=z(p+q, p-q)$
h) If $p, q(p>q)$ are taken as the generators of a Pythagorean triangle, then $z(p+q, q)+z(p-q, q)-z(p, q)=p^{2}+q^{2}$ represents the hypotenuse of the Pythagorean triangle.

Pattern II

Introduction of the transformations

$$
\begin{equation*}
x=m y, z=\left(m^{2}-1\right) \alpha^{2}, m>1, \alpha \neq 0 \tag{10}
\end{equation*}
$$

in (9), simplifies it to

$$
\begin{equation*}
y=\left(m^{2}-1\right) \alpha^{3} \tag{11}
\end{equation*}
$$

and thus

$$
\begin{equation*}
x=m\left(m^{2}-1\right) \alpha^{3} \tag{12}
\end{equation*}
$$

The values of x, y and z presented in (10), (11) and (12) represent the solutions of (9).
Properties

1) $x=6 \alpha^{3} T h_{m-1}$,
2) $\frac{x z}{y}=6 T h_{m}$
3) The value of x may be considered to represent cubic multiple of the area of the Pythagorean triangle $\left(2 m, m^{2}-1, m^{2}+1\right)$.
4) Each of the expressions $\frac{x^{2}}{x^{2}-z^{3}}, \frac{m x y}{z^{2}}$ is a perfect square.
5) Each of the expressions $\frac{x y^{2}}{z^{3}}, \frac{x y}{z^{2}}$ is an integer.
6) $\frac{m^{2} x y^{2}}{z^{3}}$ is a cubic integer.
7) $x+m y-2 m \alpha z=0$
8) $x^{3}+m^{3} y^{3}-8 m^{3} \alpha^{3} z^{3}+6 x y z m^{2} \alpha=0$
9) The triplet $(x, m \alpha z, m y)$ forms an Arithmetic Progression.
10) $\quad \alpha(m x-y)=z^{2}$
11) $m^{3} \alpha^{3} x^{3}-\alpha^{3} y^{3}-z^{6}=3 m \alpha^{2} x y z^{2}$

Pattern III

Assume the values of x and y to be

$$
\begin{align*}
& x=2^{3 \alpha-2} v^{3 \alpha-1}+v \\
& y=2^{3 \alpha-2} v^{3 \alpha-1}-v \tag{13}
\end{align*}
$$

where α, v are non-zero constants.
From (9), we get

$$
\begin{equation*}
z=(2 v)^{\alpha} \tag{14}
\end{equation*}
$$

Thus (13) and (14) represent the solutions of (9).

Properties

1) The triplet $\left(y, 2^{2(\alpha-1)} v^{2 \alpha-1} z, x\right)$ forms an Arithmetic Progression with common difference v
2) Each of the expressions $2\left(x^{2}-x y\right)-z^{3}, z^{3}-2\left(x y-y^{2}\right)$ is a perfect square.
3) Each of the expressions $12\left(x^{2}-x y\right)-6 z^{3}, 6 z^{3}+12\left(y^{2}-x y\right)$ represents Nasty Number.
4) $\quad x+y+z=(x-y)^{3 \alpha-1}+(x-y)^{\alpha}$
5) $z=(x-y)^{\alpha}$

Pattern IV

Write (9) as

$$
\begin{align*}
& x-y=1 \tag{15}\\
& x+y=z^{3} \tag{16}
\end{align*}
$$

Solving (15) and (16), we have

$$
x=\frac{z^{3}+1}{2}, \quad y=\frac{z^{3}-1}{2}
$$

For x, y to be integers, z should be odd.
Thus taking $z=2 k-1,(k \neq 1)$, the values of x and y are obtained as

$$
\begin{aligned}
& x=4 k^{3}-6 k^{2}+3 k \\
& y=4 k^{3}-6 k^{2}+3 k-1
\end{aligned}
$$

The above values of x, y and z represent the solutions of (9).

Properties

1) The solutions are primitive.

International Research Journal of Education and Technology
2) $2 x-z-1=6 T h_{2 k-1}$
3) $2 x+z^{2}-1=2 P P_{2 k-1}$
4) $x-18 T h_{k}-12 T_{k}$ is a cubic number
5) $6 H P_{k}-18 T_{k-1}-x \equiv 0(\bmod 5 k)$
6) $6 H P_{k}-18 T_{k-1}-y \equiv 0(\bmod 5 k+1)$
7) $\quad x-8 P P_{k}+6 T_{k-1} \equiv 0(\bmod 7)$
8) $y-8 P P_{k}+6 T_{k-1} \equiv-1(\bmod 7)$
9) $x=k\left(D_{k}\right)-6 T_{k-1}$
10) $y-k\left(D_{k}\right)+1 \equiv 0(\bmod 6)$
11) $8 P P_{k}-2 T_{k-1}-O_{k}-x$ is a Nasty number.
12) $x+2 T_{k}+D D_{k} \equiv 0(\bmod 4)$
13) $2\left(x+2 T_{k}+D D_{k}\right)$ is a cubical integer.
14) $6 k\left(x+2 T_{k}+D D_{k}\right)$ is a Nasty number.

Conclusion:
In this paper, we have made an attempt to find non-zero distinct integer solutions to the non-homogeneous cubic equation with three unknowns given by $x^{2}+b y^{2}=\left(m^{2}+b n^{2}\right) z^{3}$. To conclude, one may search for other choices of general form of integer solutions to the cubic equation with three unknowns in title.

References:
[1] L.E. Dickson, History of Theory of Numbers, Chelsea publishing company, Vol.II, New York, 1952.
[2] R.D. Carmichael, The Theory of Numbers and Diophantine Analysis, Dover Publications, New York, 1959.
[3] L.J. Mordell, Diophantine Equations, Academic press, London, 1969.
[4] S.G. Telang, Number Theory, Tata Mcgrow Hill Publishing company, NewDelhi, 1996.
[5] M.A. Gopalan, G. Srividhya, Integral solutions of ternary cubic diophantine equation $\mathrm{x}^{3}+\mathrm{y}^{3}=\mathrm{z}^{2}$, Acta Ciencia Indica, Vol.XXXVII, No.4, 805-808, 2011.
[6] M.A. Gopalan, S. Vidhyalakshmi, S. Mallika, On the ternary non-homogeneous Cubic equation $x^{3}+y^{3}-3(x+y)=2\left(3 k^{2}-2\right) z^{3}$, Impact journal of science and Technology, Vol.7, No.1, 41-45, 2013.
[7] M.A. Gopalan, S. Vidhyalakshmi, N. Thiruniraiselvi, On homogeneous cubic equation with three unknowns $x^{2}-y^{2}+z^{2}=2 k x y z$, Bulletin of Mathematics and Statistics Research, Vol.1(1), 13-15, 2013.
[8] M.A.Gopalan, S.Vidhyalakshmi,K.Lakshmi , Latice Points On The Non-homogeneous cubic equation $\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}+\mathrm{x}+\mathrm{y}+\mathrm{z}=0$,Impact J.Sci.Tech; Vol.7(1), 21-25, 2013
[9] M.A.Gopalan, S.Vidhyalakshmi,K.Lakshmi , Latice Points On The Non-homogeneous cubic equation $\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-(\mathrm{x}+\mathrm{y}+\mathrm{z})=0$,Impact J.Sci.Tech; Vol.7(1), 51-55, 2013
[10]S. Vidhyalakshmi, Ms. T.R. Usharani, and M.A.Gopalan, Integral Solutions of the Ternary cubic Equation $5\left(x^{2}+y^{2}\right)-9 x y+x+y+1=35 z^{3}$, International Journal of Research in Engineering and Technology, Vol.3(11), 449-452, Nov 2014.
[11]M.A. Gopalan, S. Vidhyalakshmi, S. Mallika, Integral solutions of $x^{3}+y^{3}+z^{3}=3 x y z+14(x+y) w^{3}$, International Journal of Innovative Research and Review, Vol.2, No.4, 18-22, Oct-Dec 2014.
[12]M.A. Gopalan, S. Vidhyalakshmi, S. Mallika, Non-homogeneous cubic equation with three unknowns $3\left(x^{2}+y^{2}\right)-5 x y+2(x+y)+4=27 z^{3}$, International Journal of Engineering Science and Research Technelogy, Vol.3, No.12, 138-141, Dec 2014.
[13]M.A.Gopalan, N. Thiruniraiselvi, R. Sridevi, On the ternary cubic equation $5\left(x^{2}+y^{2}\right)-8 x y=74\left(k^{2}+s^{2}\right) z^{3}$, International Journal of Multidisciplinary Research and Modern Engineering, Vol.1(1), 317-319, 2015.
[14]M.A.Gopalan, N. Thiruniraiselvi, V. Krithika, On the ternary cubic diophantine equation $7 x^{2}-4 y^{2}=3 z^{3}$, International Journal of Recent Scientific Research, Vol.6(9), 6197-6199, 2015.
[15]M.A. Gopalan, S. Vidhyalakshmi, J. Shanthi, J. Maheswari, On ternary cubic diophantine equation $3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=12 z^{3}$, IJAR, Vol.1, Issue 8, 209-212, 2015.

International Research Journal of Education and Technology

Peer Reviewed Journal

ISSN 2581-7795
[16]G. Janaki and P. Saranya, On the ternary Cubic diophantine equation $5\left(x^{2}+y^{2}\right)-6 x y+4(x+y)+4=40 z^{3}$, International Journal of Science and Researchonline, Vol.5, Issue 3, 227-229, March 2016.
[17]R. Anbuselvi, K. Kannan, On Ternary cubic Diophantine equation $3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=15 z^{3}$, International Journal of scientific Research, Vol.5, Issue 9, 369-375, Sep 2016.
[18]A. Vijayasankar, M.A. Gopalan, V. Krithika, On the ternary cubic Diophantine equation $2\left(x^{2}+y^{2}\right)-3 x y=56 z^{3}$, Worldwide Journal of Multidisciplinary Research and Development, Vol.3, Issue 11, 6-9, 2017.
[19]G. Janaki and C. Saranya, Integral Solutions Of The Ternary Cubic Equation $3\left(x^{2}+y^{2}\right)-4 x y+2(x+y+1)=972 z^{3}$, IRJET, Vol.4, Issue 3, 665-669, 2017.
[20]Dr.R. Anbuselvi, R. Nandhini, Observations on the ternary cubic Diophantine equation $x^{2}+y^{2}-x y=52 z^{3}$, International Journal of Scientific Development and Research Vol. 3, Issue 8, 223-225, August 2018.
[21]M.A. Gopalan, Sharadhakumar, On the non-homogeneous Ternary cubic equation $3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=111 z^{3}$, International Journal of Engineering and technology, Vol.4, Issue 5, 105-107, Sep-Oct 2018.
[22]M.A. Gopalan, Sharadhakumar, On the non-homogeneous Ternary cubic equation $(x+y)^{2}-3 x y=12 z^{3}$, IJCESR,Vol.5, Issue 1, 68-70, 2018.
[23]A. Vijayasankar, Sharadha Kumar , M.A.Gopalan, On Non-Homogeneous Ternary Cubic Equation $\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{x}+\mathrm{y}=2 \mathrm{z}\left(2 \mathrm{z}^{2}-\alpha^{2}+1\right)$, International Journal of Research Publication and Reviews, Vol.2(8), 592-598, 2021.
[24] S. Vidhyalakshmi, J. Shanthi, K. Hema, M.A. Gopalan, Observation on the paper entitled Integral Solution of the homogeneous ternary cubic equation $\mathrm{x}^{3}+\mathrm{y}^{3}=52(\mathrm{x}+\mathrm{y}) \mathrm{z}^{2}$, EPRA IJMR, Vol.8, Issue 2, 266-273, 2022.
[25] S.Vidhyalakshmi ,M.A.Gopalan ,GENERAL FORM OF INTEGRAL SOLUTIONS TO THE TERNARY NON-HOMOGENEOUS CUBIC EQUATION $y^{2}+D x^{2}=\alpha z^{3}$,IJRPR, Vol 3,No 9,1776-1781,2022

